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ABSTRACT

Recent research efforts have investigated the use of competitive neural networks to classify the Mach number
responses of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia.  Control input
and Mach-number response data from a 45 minute tunnel run were used for training and testing the neural  network
classifiers.  The wind tunnel Mach number was varied from 0.4 to 1.3, covering most of the operational range of the
facility.  Control inputs, consisting of raise or lower commands of varying duration to the tunnel fan drive system,
ranged from 0.25 seconds to 2.5 minutes.  Prediction of  the Mach number  response for a specific class of responses
was investigated using a  recursive, gamma-memory neural network topology suited to system identification.  The
combination of classification using a competitive network , and prediction using a gamma network,  provides
increased accuracy in  predicting the tunnel's Mach number response to  a specific class of control inputs.

BACKGROUND

The 16-Foot Transonic Tunnel at the NASA Langley Research Center, Hampton, Virginia, is a closed circuit,
single-return, continuous-flow, atmospheric tunnel with a Mach number capability from 0.20 to 1.30.  When the
tunnel began operation in November 1941,  it had a circular test section that was 16 feet in diameter and   maximum
Mach number of 0.71.  [Peddrew, 1981] Numerous upgrades to both the test section and drive system have
expanded the test envelope of this facility.  Currently, Mach numbers up to 1.05 are achieved using the tunnel main
drive fans only.   Mach numbers from 1.05 to 1.3 require the combination of  test section plenum suction with the
tunnel fans.  The tunnel fans, 34 feet in diameter, are driven from 60 to 372 rpm by a 50 MW electric drive system.
An air removal system using a 30 MW compressor and  10-Foot diameter butterfly valve provides  test section
plenum suction .  At Mach numbers above 1.275, the 10-Foot valve is fully open and increases in Mach number are
obtained from increased power to the tunnel main drive fans.

  Some of the salient features of the Mach number dynamics of the 16 Foot Tunnel are:
 - The nominal dynamics vary significantly over the operational range of the tunnel;
 - The control input to the tunnel fan drive system is bang-zero-bang: (+1 raise, -1 lower,  0 maintain speed);
 - There is transport lag (pure delay) that varies over the operational range;
 - The dynamics can change dramatically at any given operating point due to test conditions (blockage);
 - The test section Mach number computed from pressure measurements  is  noisy;
 - Power consumption is significant: 20 MW @ Mach 0.7,  80 MW @ Mach 1.3.

INTRODUCTION

Earlier efforts investigated a recursive gamma-memory [DeVries and Principe, 1992] neural network
architecture for system identification  [Motter and Principe, 1994].  A single network was trained to predict the
Mach number response of the wind tunnel for 40 sample periods into the future, based on an input-output history of
ten samples.  The network was trained using data from the entire operating range of the facility, and consequently
tested over the same range.  Results were  encouraging, indicating that a single predictor could capture some of the
dynamics of the tunnel response and predict the steady-state Mach number 40 samples into the future to within +/-
0.001.



The focus of this effort was to investigate the use of  competitive neural networks [Hertz, Krough, and Palmer]
to classify the tunnel Mach number responses resulting from similar control inputs.   Five competitive networks
were trained to classify Mach number responses from a 45 minute tunnel run, shown in Figure 1, into 70 classes. A
typical 50 point sample window with 20% control duration is also shown.
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    Figure 1.  16 Foot Transonic Tunnel Control Input and Mach Number Responses

CLASSIFICATION

 Competitive networks were constructed to classify responses for data window lengths of both 10 and 50
samples.  The classes of similar control inputs were identified by the duration of  control input as a percentage of the
data window length.  These percentages were 100, 20, 2-6 and zero percent.  The five networks represented the
following combinations:

- 50 sample data window:  100, 20, and 2-6 % control duration;
-10 sample data window:   100 and 0 %  control duration.

The input-output data  for the 50 sample data window, 20% control duration network, is shown in Figure 2.  A
competitive network was trained to classify the 50-point Mach number responses shown in Figure 2 into eight
different classes.  Also shown are the trained competitive network weights.
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Figure 2.  50 sample data  with  20% control duration and corresponding competitive network weights



The competitive network  classified the responses shown on Figure 2 into eight different classes.  A composite
of each class was made by averaging each point in the data window over all members of a class.  The composite
representation of the eight classes is shown in Figure 3.
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Figure 3.  Eight classes from 50 point sample window  with 20% control duration

Figure 4  shows the maximum and minimum values of each data point for two of the eight classes, along with
both a  composite and typical member of the class.
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Figure 4.   Characteristics of two  of the eight classes
PREDICTION

A predictor was trained for each class identified by the competitive network.  The predictor is initialized with the
ten most recent values of the control input and Mach number response, and then  predicts the next forty samples of
the Mach number response based on zero control input.  Details of both the architecture and training of the
recursive, gamma-memory neural network predictor are described in [Motter and Principe, 1994].  Figure 5 shows
the predictor output for several classes of the 50 point sample window, 20% control duration responses.
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2  −  Class # 1 responses (+) and predictor outputs (o)
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Figure 5.  40 Sample Prediction of Mach number responses for two different classes

CONCLUSION

The use of competitive networks to cluster the Mach number responses into classes provides a basis for
developing a set of predictors which can more accurately  predict the dynamics of the wind tunnel’s response.  This
is in contrast to previous results which used a single predictor,  capable of accurately predicting the steady -state
response while capturing only some of the general features of the dynamic response.  Improved prediction results
have been shown for the classes of  Mach number responses  associated with control inputs of  20% duration of the
50 point sample window as shown in Figure 2.  Further work will attempt to identify the minimum number of
classes to accurately predict the dynamics of the Mach number response for all control inputs of interest.
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